Lead Acid Battery Charger #1

Schematic

Description

Except for use as a normal Battery Charger, this circuit is perfect to ‘constant-charge’ a 12-Volt Lead-Acid Battery, like the one in your flight box, and keep it in optimum charged condition. This circuit is not recommended for GEL-TYPE batteries since it draws to much current.

The above circuit is a precision voltage source, and contains a temperature sensor with a negative temperature coλficient. Meaning, whenever the surrounding or battery temperature increases the voltage will automatically decrease. Temperature coλficient for this circuit is -8mV per °Celcius. A normal transistor (Q1) is used as a temperature sensor.

This Battery Charger is centered around the LM350 integrated, 3-amp, adjustable stabilizer IC. Output voltage can be adjusted with P1 between 13.5 and 14.5 volt. T2 was added to prevent battery discharge via R1 if no power present. P1 can adjust the output voltage between 13.5 and 14.5 volts. R4’s value can be adjusted to accommodate a bit larger or smaller window. D1 is a large power-diode, 100V PRV @ 3 amp. Bigger is best but I don’t recommend going smaller. The LM350’s ‘adjust’ pin will try to keep the voltage drop between its pin and the output pin at a constant value of 1.25V. So there is a constant current flow through R1.

Q1 act here as a temperature sensor with the help of components P1/R3/R4 who more or less control the base of Q1. Since the emitter/base connection of Q1, just like any other semiconductor, contains a temperature coλficient of -2mV/°C, the output voltage will also show a negative temperature coλficient. That one is only a factor of 4 larger, because of the variation of the emitter/basis of Q1 multiplied by the division factor of P1/R3/R4. Which results in approximately -8mV/°C. To prevent that sensor Q1 is warmed up by its own current draw, I recommend adding a cooling rib of sorts. (If you wish to compensate for the battery-temperature itself, then Q1 should be mounted as close on the battery as possible) The red led (D2) indicates the presence of input power.Depending on what type of transistor you use for Q1, the pads on the circuit board may not fit exactly (in case of the BD140).

Please follow and like us:
Pin Share

PCB



Subscribe
Notify of
guest


5 Comments
Inline Feedbacks
View all comments
Gilles

Do you have a battery charger project Lithium Ion 12-15 volts DC? Thank you! Gilles

ik242

Q2 is always saturated. what is the purpose of R5 and Q2?

ilyas khan

sir i have to design switched mode car battery charger of 300 watt or above than 300watt.sir i am new in electronics . so please ,please and please give me a complete block diagram of this charger (i shell be thankfull to u )..thanks

sdfg

ilyas khan. this circuit is NOT a switched mode charger. it uses a linear regulator.

sadun

thanks

RELATED PROJECTS

TOP PCB Companies